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Abstract. Choosing the best algorithm for a machine learning task is an
open problem. Statistical techniques such as paired t-test and k-fold cross
validation have been proposed, but they require independence assump-
tions that are not met in many data mining tasks and for large data sets
these techniques suffer from the multiplicative effect. We propose Analy-
sis Of Variance as an alternative for comparing learning algorithms in
large databases. We show that this approach avoids the drawbacks of
the paired t-test and k-fold cross validation. We describe several experi-
ments on a DELVE database that show the advantages of our proposal
in comparing the decision tree learning algorithms Gain Ratio, Gini and
Chi Squared Automatic Interaction Detection as well as the naive Bayes
algorithm.
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1 Introduction

The development of learning algorithms in Machine Learning (ML) is quite vast
and varied since there are many ways of searching the space of hypotheses for
constructing ways of learning called models. Learning algorithms for model con-
struction include Decision trees, and Bayesian nets. One of the fundamental
questions in ML is this: given a specific learning problem and context, which
algorithm is the one that generates the best model?. Alternatively the question
may be in this way: given several learning algorithms and a large database which
algorithm will produce the most accurate predictions?. This article intends to
give an approximation to the second question. Our starting premise is that the
most important factor to look at when selecting an algorithm is its error in pre-
dicting unseen cases; however, we take into account that other factors like speed
of learning and understandability of the generated model can be more important
in some domains.

A model, also called a classifier, is a function that given an example, the
function assigns the example a class among several classes. A learning algorithm
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is a function that given a database of instances and its classes constructs a clas-
sifier for assigning classes to unseen instances. The learning function is searched
from a huge space of possible hypotheses.

Model validation means the evaluation of algorithms by comparing the ac-
curacy of the models generated by the algorithms. Validation can be divided
basically in three independent processes: (1) Measuring the error in the algo-
rithm, (2) Improving the performance, (3) Comparing two or more algorithms.
We propose a method for comparing more than two learning algorithms to select
the best one depending upon the problem to be solved.

In this article we start from some premises related to points 1 and 2. Mea-
suring the error deals with establishing a way of predicting the error in future
cases; there are many different techniques to measure this, that can be chosen
according to the number of examples. [16] suggests re-sampling techniques for
data bases with less than 1,000 examples, and the holdout method for data bases
where more than 1,000 examples can be used for testing. The Holdout method
consists of separating the data in two sections: training and testing. We use the
holdout method and justify why cross validation is not appropriate for model
comparison.

For improving the performance of a model there are three strategies: a) ma-
nipulate the database reducing the training series, perform attribute selection
or create new ones b) combine several models and weigh the results (Bagging
or Boosting [1]) ¢) optimize the parameters of the algorithm. When compar-
ing Data Mining (DM )algorithms it is important to recognize that any of these
three strategies could produce a better result on one algorithm over another,
and this fact would make algorithm selection a much more complicated process,
[12]. However, [16] suggests the use of each algorithm in its best form, that is, if
the algorithm is improved by some kind of manipulation, then it should be used.
In this work we used the first approach.

We propose the use of Analysis of Variance (ANOVA)as an alternative test
to the paired t test. Following the same line of reasoning, no costs for different
errors were taken into account (false negative or false positive) because not all
of the learning algorithms can deal with them. We worked only with the 0-1 loss
function.

This work is organized as follows: In section 2 we present a review of works
for comparing models of Data Mining, and we discuss some common problems.
In section 3 we present the ANOVA as a proposed solution to these problems. In
section 4 we describe the experiments and the results. Finally, section 5 presents
the conclusions.

2 Literature Review

Usually, model error is measured by a technique known as ten-fold cross valida-
tion since it has been shown that it gives an almost unbiased estimator of the
true error [10]. Ten-fold cross validation consists on randomly splitting the data-
base in ten sections. Then, one section is left aside at a time and the algorithm is
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trained with the 9/10 remaining, after that, the error is computed in the series
that was left aside. Hence the learning algorithm is performed ten times, each
time with a different training series (even though they share many examples)
and each time tested in a completely different test series. Finally, the average
of the ten estimated errors is taken to produce the estimate of the error for
the classifier. Traditionally, when we need to compare the error of two learning
algorithms A and B in a database Dy, it is customary to apply the following
procedure based on k fold cross validation, [13]:

1. Database Dy is split into k sections T, 75, ..., Ty (folds) where each section con-
tains at least 30 examples (heuristic rule based on the central limit.)
2. For i =1 to k , use T; as the testing series and the remaining of the data as the
training series S;.
— Measure the error of the algorithms, E4(S;), Eg(S;) in the testing series T;
— Measure the difference in the computed error obtained by each of the two
algorithms §; = Ea(S;) — EB(S;)
e

3. Compute the average of the differences of the errors obtained 4, where 6 = T =10

This procedure is identical to ten-fold cross validation, with the only differ-
ence that instead of obtaining the error in only one algorithm, the difference in
errors of the two algorithms is obtained. It is worth stating that the number &
can be 10 or a larger number with the only restriction that there are at least 30
examples in each section (fold).

Now, if the two algorithms have the same performance it would be expected
that the value of § is approximately zero. But, how close to zero? The well-known
paired t test is generally used to determine if the value of ¢ is small enough to
conclude that the two algorithms have the same error. It is called paired t test
because the two values obtained, F4(S;) and Fg(S;) , are statistically dependent
(in this case they are dependent because the algorithms are trained in the same
training series and are also tested on the same testing series). In the paired t test

the test statistic is: t = ;;/A\/Oﬁ where Aq tends to 0.

The null hypothesis states that the difference in error is practically zero
whereas the alternative hypothesis states that the difference is less than, greater
than or not equal to zero. However, one of the assumptions of the paired t
test is that the pairs of values (F4(S1), Eg(S1)),...,(Fa(Sk), Ep(Sk)) are
independent, assumption that is violated in the previously explained procedure.
But how and where is this assumption violated?

The paired t test is based on the premise that all individual measures are
independent (measures in this paired t test are differences J; on the k estimated
errors of the two algorithms).

Unfortunately, cross validation (as well as bootstrapping) introduces some
degree of dependence amongst these measures, and this produces a bias on
the t test towards rejecting the hypothesis of equality of means. But, why are
the measures dependent? Each measure depends on two quantities: a) the train-
ing series and b) the models constructed from the corresponding training series.
Testing series are independent, but the models are not. Each algorithm develops
a model in 10 training series, (assuming k& = 10) which are almost identical.
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Each training series shares 89% (8/9) of the data with all the other training
series on the 10 iterations, therefore the training series overlap, and this intro-
duces a dependence amongst the models generated from them, hence, the errors
produced by these models will also be dependent.

But this is not the only drawback on using this test. When we want to
compare more than two population means, the paired t test is not recommended
for the following reason. Suppose that from a certain population five samples
are considered from which their corresponding means are computed: 71, ..., T5.
It is required to perform the following 10 ¢ tests to compare the 10 pairs of
sample means (Z1,T2), ..., (T1,T5). If more sample means are to be compared,
more t tests should be performed; for example, a total of six samples increase
the number of pairs to fifteen. However, when each sample mean is paired with
another and a ¢ test is performed for each pair of means, the possibility of it
showing significant differences for some pairs of means is increased, even if the
sample means proceed from the same population! This phenomenon is known
in statistics as the multiplicative effect. Then, whenever comparing three or
more sample means, amongst themselves, the ¢ test is inappropriate. Another
technique should be used to test the hypothesis of equality of means !.

Up to here we have mentioned only the paired t test, however, there exist
other approaches to comparing learning algorithms. For instance Dietterich [5]
suggests the test 5x 2cv as the best test to compare errors (means) for algorithms
that can be executed efficiently 10 times, he warns however that this test violates
some of the independence assumptions. Other authors even question if the type
I error is the one to compare (Type I error consists on falsely rejecting the
hypothesis of equality of means). Also, due to how unstable learning algorithms
are, any comparison between two or more of them must be done using multiple
runs on different training series to remove the variability of the algorithm [4], [7];
this is the approach we take here. There is not a consensus amongst the research
community about the method to use for comparison studies [11].

3 Comparing Algorithms using Analysis of Variance

We have mentioned two drawbacks about using the paired t test; on one hand
the overlapping of the training series due to cross validation and on the other
the multiplicative effect when comparing more than two algorithms. To correct
the former, the method proposed here is applicable only for large databases?,
so that the holdout method can be used to measure error and hence eliminate
the dependence produced by cross validation. Typically, the databases are huge
(thousands or millions) in the data mining community. To avoid the latter, a
statistical test should be found that does the same function as the paired t test
but that can be used for more than two populations; such a test is the Analysis of

! Sample mean corresponds in this work to the algorithm error.

2 In some domains 2,000 examples can be a large number whereas in another domain
would be totally insufficient. We propose the use of learning curves to determine the
number of examples needed to learn an underlying pattern.
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Variance (ANOVA). ANOVA has been proposed for learning in support vector
machines [15].

ANOVA is a statistical procedure for comparing the means of a population
under the effect of different treatments. It is called a one-way ANOVA when only
one variable effects the population, in a several-way ANOVA there are more vari-
ables effecting the population. For this work the treatments studied with ANOVA
are the learning algorithms that have been trained with the training series, and
the effects these treatments produce on the testing series will be studied, that is,
the errors produced by the classifiers. Before applying ANOVA we must verify
that its statistical assumptions are satisfied [3]. These assumptions are: (1) The
observations in each sample are independent. (2) The underlying distribution in
each population is normal. (3) All the populations have the same variance.

4 Experiments and Results

We present two experiments and for each four learning algorithms are com-
pared; three decision trees generated with different split rules, (Gain ratio, Gini,
and CHAID or Chi squared Automatic Interaction Detection) and the Bayesian
classifier (Naive Bayes). Several approaches have been proposed for learning de-
cision trees from databases [8]. To compute the errors obtained by each of the
algorithms, we used the DM software Mineset 3.1 (Silicon Graphics). In the de-
cision trees the level of pruning was established at 0.7(default value) and in the
Bayesian classifier the Laplace corrector was set to automatic.

The database used in the experiments consists of 45,000 entries and was
obtained from the Delve archives, it can be found under the name Adult Dataset.
Each entry presents 13 attributes; 6 continuous, 7 nominal, and it does not show
any missing values. The dependent variable is Income, and can be classified in
greater or less than 50,000 US dollars annually. The purpose of this database
is to classify if a person has an income greater or smaller than 50,000 dollars
(dichotomous variable). From now on we call a sample from the population the
series of errors obtained by the algorithms in the database, being the population
the universe of all errors that would be obtained from an infinite database from
the same domain of application.

The first experiment consists of a two way ANOVA (one factor being the
algorithms and the other as the training and testing series - the two of them
together -), using blocking in the training and testing factor. We split at random
the database in 20 sections, that is, each part consisted of 2, 250 examples. In each
of them, we chose at random 1,250 examples for training and 1,000 examples
for testing; in this way we got 4 samples of 20 errors each. See left side in Fig 1.

The numbers may seem arbitrary but there is a reason for this; first, the
database was broken in 20 parts because the analysis of variance gets a bet-
ter consistency when the number of observations is relatively large (20 is an
acceptable value). The decision to assign 1,250 examples for training to each
subsections due to the fact that the error made by the algorithms when train-
ing with 1,250 examples was almost the same as the error made with all the
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Fig. 1. Training and Testing examples : 1°* and 2"¢ experiments

45,000 examples (this was verified using learning curves), therefore 1,250 train-
ing examples are a reasonable number to train the algorithms. Also, the 1,000
test examples represent the minimum acceptable number of examples that are
needed to compute with a good approximation the error in an algorithm (with
only 1% deviation of the true error). To have an exact judgment on the error in a
model, 5,000 testing examples are needed (with a deviation in the computation
of the error of 0.5%) [16]. Although the way the database was split may seem
arbitrary, the reader may verify with has been said that there is a theoretical
and also an empirical reason. The errors obtained with the four algorithms are
shown in Table 1. See errors in Table 1 for these algorithms.

Table 1. Performance of the different methods

Error

Algorithm | 1 | 2 [...| 19 | 20 |Average

Gain Ratio |17.8(14.5|...[16.7(14.6/16.65 %

Chi-Squared|18.9(18.8|...| 19 [16.6/20.05 %
Gini 17.1]16.1|...(20.2|17.1/19.05 %

naive Bayes|18.517.3|...|17.5|18.4|17.92 %

The model generated in this first experiment is a model of mixed effects
since we are considering a non-random factor (algorithms) and a random one
(the training and testing series). This random factor represents the blocking.
Blocking is done when an external variable is present and can affect the results
of the test [2]. In the case of comparing algorithms, the external variable is the
random selection of the training and testing examples. At first sight we can see
that Gain Ratio is the treatment with less error and this is proven using analysis
of variance. Once we have the observed errors (that conform four samples)we
verify that the statistical assumptions of ANOVA are satisfied.

Assumption (1) is satisfied due to the form in which the samples were con-
structed. Both the training and testing examples are randomly chosen. All the
samples have a size of twenty observations (2,250 x 20). To check assumption
(2) a statistical test known as Shapiro-Wilks was applied. In this test the null
hypothesis is that the population is normally distributed. When applying the
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test to the 20 observations obtained from the treatment Gain Ratio we got a p-
value of 0.4088 (W = 0.9519). As can be seen, the p-value is large and therefore
the null hypothesis cannot be rejected. Similar results were obtained with the
other three treatments (algorithms). So, assumption (2) is also satisfied in the
four treatments. To test for assumption (3) 4 tests were conducted (in all four
of them the null hypothesis is that the variances are equal). The tests: O’Brien,
Brown-Forsythe, Levene and Barlett did not reject the null hypothesis, that is,
we cannot reject the equality of variances in the average errors of the algorithms.
It must be clear that assumption (3) states that the population variances must
be equal regardless of the probability distribution of the data (the distribution
may be binomial). The normality was tested by the classical tests.

Once we have verified that all the assumptions are satisfied, we can proceed
to perform the analysis of variance. In Table 2 we can see the summary of the
analysis of variance, as if there was only one factor. Since the p-value is less than
0.0001 we can safely reject the null hypothesis, which means the algorithms
behave significantly different. In another results, not shown here, the treatments
as well as the blocks are significant (we reject the null hypothesis), that is, they
have an influence on the degree of error.

Table 2. Analysis of Variance like a whole

Source |DF|Sum of Squares|Mean Square|F Ratio
Model | 22 235.629 10.7104 7.5926
Error |57 80.4065 1.4106 Prob>F
C Total| 79 316.0355 <.0001

When the null hypothesis in the analysis if variance is not rejected, the analy-
sis is concluded and no significant differences between the means (in this case
average errors) were found [3]. But if the null hypothesis is rejected, it is of in-
terest to know which means differ from the others. The method to continue with
this analysis is called multiple comparisons. There are several tests in statistical
literature to do this. One such tests is Tukey’s test. For the case of comparing
algorithms we would like to compare all pairs formed from the four treatments.
When applying this procedure to the factor algorithms we get®: Qo.o54.57 =

3.75/MSE/J = 3.75,/1.41/20 = 0.995.

As we may see, 0.995 is smaller than any difference between the averages
of the four algorithms (17.92 — 16.65), (19.05 — 17.92 ), (20.05 — 19.05). There-
fore, we can conclude that all four algorithms are significantly different amongst
themselves: they are all different. It would be interesting to establish the reason

3 MSE : Mean Square Error, Q: Critical Value of Studentized Range.
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why this difference exists between the algorithms; a bias and variance analysis
in each of them may help in finding the reason®.

For the second experiment, we consider three factors instead of two: algo-
rithms, training series and testing series. The three factor ANOVA has exactly
the same assumptions as one way and two way ANOVA; and so, the results on
verifying the assumptions in this second experiment is not shown here.

The database was split, one with 24,000 examples for training and the other
with 20,000 examples for testing (both randomly chosen). Both, training an
testing examples were also split into groups of 4,000 examples, that is, we got 6
groups of 4,000 training examples and 5 groups of 4,000 testing examples, look
right side of figure 1. Each of the four algorithms was trained on the 6 training
series and was tested in the 5 testing series, giving a total of 120 observations
(4 algorithms x 6 training series x 5 testing series). This methodology produce
4 samples of 30 (6 x 5) observations each for the ANOVA experiment.

This experiment, as the first one, is a mixed effects one since the treatments
are fixed, but the training and testing series are random. The interesting part of
this experiment is that the interaction between the 3 factors is also considered
(algorithms, training and testing), which was not present in the first experiment.
The null hypothesis is the same as before; all errors are the same, Table 3°.

Table 3. Three factors test of effects (A = Algorithm, T = Training, Te = Testing)

Source| SS |MS Num|DF Num|F Ratio|Prob >F
A ]98.88| 32.96 3 30.22 | <0.0001
T [13.72| 2.74 5 5.98 | 0.0025

A-T |6.03 0.40 15 3.10 0.0009
Te |9.70 2.42 4 2.77 0.07
A-Te | 9.82 0.82 12 6.32 | <0.0001
T-Te | 3.72 0.19 20 1.44 0.1408

We can see that in the majority of the factors, the null hypothesis is rejected
except in the factor testing, and in the factor interaction between testing and
training (T'—T'e). This means that testing examples by themselves do not change
the results. This may be due to the fact that the number of training examples is
quite large (4,000) as to assure the goodness of the approximation to the true
error of the algorithm. In other words, using 4,000 testing examples would not
change significantly the mean error of the algorithm. As was mentioned earlier,
with 5,000 testing examples we can be completely certain that the computed
error is the true error of the algorithm, so with 4,000 the approximation is al-
most perfect [16]. Treatment effects are highly significant, and we can conclude

4 The bias of an algorithm is the systematic error that cannot be eliminated even if
equally size infinite training series are obtained [6] .
58S : Sum of Squares, MS: Mean Square, DF : Degree of Freedom.
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that each algorithm has a different effect. Training examples present a signifi-
cant difference also, from here we can see that when varying the training series
the generated classifiers are significantly different (even the classifiers generated
with the same algorithm). This behavior is what Breiman called an ”unstable”
algorithm [4]. The summary of the analysis is shown in Table 4. We can see
that the hypothesis of equality of means is also rejected (p-value < 0.0001). The
average errors obtained in this experiment are: Bayes (17.52%), Chi S. (18.36%),
Gain R. (15.92%), Gini (17.82%). Note that the Gain Ratio is the best.

Table 4. Analysis of variance as a whole for three factors

Source |DF| SS |Mean Square|F Ratio
Model | 59 |141.87 2.40 18.56
Error | 60 | 7.77 0.13 Prob>F

C Total|119(149.63 <.0001

We perform two independent experiments. None of them is better than the
other, they are simply two ways of approaching the ANOVA for the same prob-
lem; the reader can choose the one that seems more appropriate. There is no
agreement amongst the Al community about how to compare learning algorithms
[9]. Even statisticians have some problems in agreeing on the correct approach
in complex experimental design problems [14].

5 Conclusions

The results obtained for both experiments are the same: in first place, algorithms
are significantly different and, in second place, Gain Ratio is the best algorithm
to predict if a person has an income greater to 50,000 dollars. Therefore, we
conclude that ANOVA is able to compare several learning algorithms and select
the best algorithm for this particular database. In this case the best algorithm
is Gain Ratio. It may happen that algorithms don’t show differences, and in
such a case, we could chose the fastest algorithm or the easiest to interpret (for
example, a decision tree would be preferred over a neural net) .

ANOVA is an alternative technique that does not violate the statistical as-
sumptions of commonly used tests. Three statistical assumptions for ANOVA
must be satisfied and also a sufficiently large database should be used (to be
able to break it into smaller databases). Although these requirements may seem
burdensome and restricted only to domains that satisfy them, it is worth trying
this technique when the degree of error is the most important factor to deal with.
We propose a method to determine the best algorithm in a particular problem.

Experimental design was not developed with computational algorithms in
mind, therefore, any application of the statistical techniques for this purpose
must be seen as a mere approximation to the solution of the problem, but not
as the only form to compare algorithms.
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Choosing the best algorithm for a particular problem is an exploratory process;
it depends directly on the knowledge the analyst has of the algorithms and the
domain of application, hence involving some science and also some art. Funda-
mental research in ML is inherently empirical, because the performance of ML
algorithms is determined by how well their underlying assumptions match the
structure of the world [4].

There is not a general theory about how to choose an algorithm a priori. What
we would like is to find a series of measures obtained from the data from which
we could predict with a certain degree of confidence which algorithm will behave
the best performance[11] but currently, this is not possible. If we want to prove
that an algorithm is in general better than another (this is perhaps one of the
fundamental questions in ML [4], [5]), a database used in the experiment should
be chosen first, however, the question about which databases are representative
is still unanswered.

References

1. E Bauer and R Kohavi. An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning, 36:105-142, 1999.

2. G E P Box, W G Hunter, and Stuart. Estadistica para investigadores. John Wiley
and Sons Inc, 1988.

3. J L Devore. Probabilidad y Estadistica para Ingenieria y Ciencias. Thomson and
Learning, 2001.

4. T G Dietterich. Editorial. Machine Learning, 24(2):1-3, 1996.

5. T G Dietterich. Approximate statistical tests for comparing supervised classifica-
tion learning algorithms. Neural Computation, 10(7):1895-1924, 1998.

6. T G Dietterich. Machine learning bias, statistical bias, and statistical variance of
decision tree algorithms. Machine Learning, 1998.

7. T G Dietterich. Machine learning for sequential data: A review. In T Caelli, editor,
Structural, Syntactic, and Statistical Pattern Recognition, volume 2396, pages 15—
30. Springer-Verlag, 2002.

8. W Fan, H. Wan, P S Yu, and H. S. Lo. Inductive learning in less than one sequential
data scan. In Proc IJCAI, 2003.

9. A Feelders and W Verkooijen. Learning from Data: Al and Statistics V, chapter
On the Statistical Comparison of Inductive Learning. Springer-Verlag, 1996.

10. R Kohavi. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In Proc IJCAI, 1995.

11. R Kohavi. Data mining using MLC++. Machine Learning, 6(4):234-245, 1996.

12. D Michie, D J Spiegelhalter, and C C Taylor. Machine Learning, Neural and
Statistical Classification. Ellis Horwood, 1994.

13. T Mitchell. Machine Learning. McGraw-Hill, 1997.

14. S L Salzberg. On comparing classifiers: A critique of current research and methods.
Data Mining and Knowledge Discovey, 1:1-12, 1999.

15. G. Valentini and T. G. Dietterich. Bias-variance analysis of support vector ma-
chines for the development of svm-based ensemble methods. Machine Learning
Research, To appear, 2004.

16. S M Weiss and C A Kulikowski. Computer Systems that Learn. Morgan Kaufmann,
1991.



